Chapter 4, Practice Quiz 1

Lessons 4.1, 4.2, and 4.3

Skills Assessed:

I can plot points in a coordinate plane. I can draw a scatter plot and make predictions. I can graph a linear equation using a table.

1) Write the ordered pairs for the points labeled *A*, *B*, *C*, and *D*

2) Plot and label the ordered pairs: S(1,4), U(0,2), N(2,-5).

3) The 1996 population, *P* (in millions), for seven states is shown in the table below. The number of U.S. representatives, *R*, for each state is given. Make a scatter plot of the data, with population on the horizontal axis.

State	AK	OR	MN	NC	MI	IL	FL
Population, P (in millions)	0.6	3.2	4.7	7.3	9.6	11.8	14.4
Number of U.S. representatives, R	1	5	8	12	16	20	23

4) Describe the relationship between the population and the number of U.S. representatives in question 3.

Name: _____

Date: _____ Hour: _____

I can graph horizontal and vertical lines. I can find the intercepts of a graph of a linear equation. I can use intercepts to sketch a graph of an equation.

5) Check if the point is a solution to the equation. Show your work. Answer "yes" or "no."

4y - 6x = 0 (-3, -2)

6) Re-write the equation in function form. Show your work

-7x + 2y = 4

7) Create a table of values to graph the equation y = 1 - 2x.

- 8) You earn \$12 an hour mowing lawns and \$8 an hour washing windows. You want to make \$600 in one week. An algebraic model for your earnings is 12x + 8y = 600, where x is the number of hours you mow lawns and y is the number of hours you wash windows. If you spent 15 hours washing windows, how many hours did you have to mow lawns to make \$600 in one week? Show your work.
- 9) Find the x- and y-intercepts of the graph of the equation.
 - x + 2y = 5

6) _____

5) _____

7)

				. /	y				
		L_		2					
		L_							
 						_			
		3	- 1]	L	, ,	3	x
		3		-1		L		3	x
		3		-1				3	x
		3		-1 -3				3	x

8) _____

9) *x*-intercept_____

y-intercept_____

10) Graph the line that has the given intercepts:

x-intercept: 4 *y*-intercept: -1

- 11) Find the x- and y-intercepts of the graph of the equation.Show your work. Then graph the equation.
 - y = 3 x

12) You sold tickets to the school play. Advance tickets were \$5.00 and tickets bought at the door were \$6.00. Total ticket sales were \$570. Let *x* represent the number of advance tickets and *y* represent the number of door tickets. Write an equation to represent the number of tickets sold. Sketch a graph of the equation.

3

x

y

3

-1

1

1

-3

11)

12) Equation: _____

