Worksheet 8.1 - Multiplication Properties of Exponents - Textbook pages 450-455

LEVEL 1

Simplify each expression.

1) $x\left(x^{3}\right)\left(x^{2}\right)$
2) $3^{4}\left(3^{5}\right)$
3) $\left(z^{5}\right)\left(z^{6}\right)(z)$
4) $\left(y^{7}\right)^{3}$
5) $(-3)^{2}$
6) -3^{2}

LEVEL 2

Simplify each expression.
7) $\left(2 x y^{4}\right)^{5}$
8) $\left(2 x^{3} x^{4}\right)^{3}$
9) $w^{5}\left(2 w^{2}\right)^{3}$

LEVEL 3
Simplify each expression.
10) $\left(-3 x^{4} y^{5}\right)^{3}$
11) $\left(-(-4 x)^{2}\right)^{3}$
12) $5 x\left(x y z^{2}\right)^{2}$
13) $4 h^{2}\left(3 h^{3}\right)^{2}$
14) $(-t u)\left(t^{5} u\right)^{3}$
15) $4 x^{6}\left(10 x^{5}\right)^{4}$

LEVEL 4

16) The power generated by a windmill can be modeled by the equation $w=0.015 s^{3}$, where w is the power measured in watts and s is the wind speed in miles per hour. Find the ratio of power generated by a windmill when the wind speed is 30 miles per hour to the power generated when the wind speed is 10 miles per hour.

Write a general statement about how tripling the wind speed affects the amount of power generated by a windmill.

Explain why tripling the wind speed does not just triple the power generated. Talk about the equation in your explanation.

